If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6-22x+8x^2=0
a = 8; b = -22; c = +6;
Δ = b2-4ac
Δ = -222-4·8·6
Δ = 292
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{292}=\sqrt{4*73}=\sqrt{4}*\sqrt{73}=2\sqrt{73}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-2\sqrt{73}}{2*8}=\frac{22-2\sqrt{73}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+2\sqrt{73}}{2*8}=\frac{22+2\sqrt{73}}{16} $
| 77-a=15 | | 15=a-77 | | 43=4v+-11 | | 3c-4=1/7 | | x-27=63 | | 6x-5-2x=11-4 | | -6(x+8)=60 | | x/2-2x=4.5 | | 2/3x+8=28 | | 11x-4+70=180 | | 0.25x+108=180 | | f^2-19f=0 | | 4x+48=7 | | 4s=37 | | 11.2=f+1.8 | | X^2+5x+6=15 | | -15.3=-7.5k+-9.66 | | 3x+3-x+2=x+4 | | 7x+5=8x-3+9x | | 8x+50=1300 | | 4X^2+2x-702=0 | | X^2+2x-702=0 | | 5y+6-12y=−29 | | (8x-2)2=12x+24 | | 40n-5n=-2 | | 5y+6-12y=(−29) | | 8/3x-9/4x=-52/12 | | 14z+100=4z | | 6-3x=10x+6 | | F(t)=-2t+7 | | 4/5/3=x/100 | | 20d/30=38 |